Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The influence of perpendicular transport behavior on the properties of n-i-p type amorphous silicon solar cells

Identifieur interne : 000014 ( Main/Repository ); précédent : 000013; suivant : 000015

The influence of perpendicular transport behavior on the properties of n-i-p type amorphous silicon solar cells

Auteurs : RBID : Pascal:14-0027507

Descripteurs français

English descriptors

Abstract

Different types of boron-doped window layers have been prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 150 °C. The effects of perpendicular transport behavior on the properties of n-i-p type amorphous silicon (a-Si) solar cells, which involve inner perpendicular conductivity of p layers, perpendicular transport properties at p/ITO interfaces and recombination kinetics at i/p interfaces have been investigated by perpendicular dark conductivity, potential barrier at p/ITO and dark current-voltage characteristics of n-i-p a-Si diodes, respectively. High doping efficiency in the window layers with nano-sized silicon crystals has been observed to facilitate the significant improvement of perpendicular dark conductivity and transport behavior at p/ITO interfaces. The dark current-voltage characteristics indicated intrinsic a-Si/p-type microcrystalline silicon heterojunction transitions possessed much higher recombination rate and decreased value of built-in potential in the intrinsic layer. By optimizing the process parameters, high open circuit voltage (0.96 V) and fill factor (0.73) were achieved for n-i-p type a-Si single junction solar cell with p-type amorphous silicon carbide/nanocrystalline silicon hybrid window layer.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0027507

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The influence of perpendicular transport behavior on the properties of n-i-p type amorphous silicon solar cells</title>
<author>
<name>JUN MA</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIAN NI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIANJUN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QUN LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name>GUOFU HOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XINLIANG CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAODAN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XINHUA GENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YING ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300071</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0027507</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0027507 INIST</idno>
<idno type="RBID">Pascal:14-0027507</idno>
<idno type="wicri:Area/Main/Corpus">000249</idno>
<idno type="wicri:Area/Main/Repository">000014</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous material</term>
<term>Boron addition</term>
<term>Chemical vapor deposition</term>
<term>Crystalline material</term>
<term>Dark conductivity</term>
<term>Dark current</term>
<term>Diode</term>
<term>Doping</term>
<term>Heterojunction</term>
<term>High efficiency</term>
<term>High voltage</term>
<term>Indium oxide</term>
<term>Low temperature</term>
<term>Microcrystal</term>
<term>Nanocrystal</term>
<term>Open circuit voltage</term>
<term>Optimization</term>
<term>PECVD</term>
<term>Potential barrier</term>
<term>Radiofrequency</term>
<term>Silicon</term>
<term>Silicon carbide</term>
<term>Silicon solar cells</term>
<term>Single junction solar cell</term>
<term>Tin addition</term>
<term>Transport properties</term>
<term>Voltage current curve</term>
<term>Window layer</term>
<term>n type semiconductor</term>
<term>p type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur type p</term>
<term>Matériau amorphe</term>
<term>Cellule solaire silicium</term>
<term>Addition bore</term>
<term>Radiofréquence</term>
<term>Méthode PECVD</term>
<term>Dépôt chimique phase vapeur</term>
<term>Basse température</term>
<term>Propriété transport</term>
<term>Addition étain</term>
<term>Conductivité obscurité</term>
<term>Barrière potentiel</term>
<term>Courant obscurité</term>
<term>Caractéristique courant tension</term>
<term>Diode</term>
<term>Rendement élevé</term>
<term>Dopage</term>
<term>Hétérojonction</term>
<term>Optimisation</term>
<term>Haute tension</term>
<term>Tension circuit ouvert</term>
<term>Semiconducteur type n</term>
<term>Oxyde d'indium</term>
<term>Silicium</term>
<term>Matériau cristallin</term>
<term>Microcristal</term>
<term>Carbure de silicium</term>
<term>Nanocristal</term>
<term>ITO</term>
<term>Couche fenêtre</term>
<term>Cellule solaire monojonction</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matériau amorphe</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Different types of boron-doped window layers have been prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 150 °C. The effects of perpendicular transport behavior on the properties of n-i-p type amorphous silicon (a-Si) solar cells, which involve inner perpendicular conductivity of p layers, perpendicular transport properties at p/ITO interfaces and recombination kinetics at i/p interfaces have been investigated by perpendicular dark conductivity, potential barrier at p/ITO and dark current-voltage characteristics of n-i-p a-Si diodes, respectively. High doping efficiency in the window layers with nano-sized silicon crystals has been observed to facilitate the significant improvement of perpendicular dark conductivity and transport behavior at p/ITO interfaces. The dark current-voltage characteristics indicated intrinsic a-Si/p-type microcrystalline silicon heterojunction transitions possessed much higher recombination rate and decreased value of built-in potential in the intrinsic layer. By optimizing the process parameters, high open circuit voltage (0.96 V) and fill factor (0.73) were achieved for n-i-p type a-Si single junction solar cell with p-type amorphous silicon carbide/nanocrystalline silicon hybrid window layer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>120</s2>
</fA05>
<fA06>
<s3>p. b</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The influence of perpendicular transport behavior on the properties of n-i-p type amorphous silicon solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JUN MA</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JIAN NI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JIANJUN ZHANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>QUN LIU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GUOFU HOU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XINLIANG CHEN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>XIAODAN ZHANG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>XINHUA GENG</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>YING ZHAO</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic Information Science and Technology of Ministry of Education (Nankai University)</s1>
<s2>Tianjin 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>635-641</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000508232450270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0027507</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Different types of boron-doped window layers have been prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 150 °C. The effects of perpendicular transport behavior on the properties of n-i-p type amorphous silicon (a-Si) solar cells, which involve inner perpendicular conductivity of p layers, perpendicular transport properties at p/ITO interfaces and recombination kinetics at i/p interfaces have been investigated by perpendicular dark conductivity, potential barrier at p/ITO and dark current-voltage characteristics of n-i-p a-Si diodes, respectively. High doping efficiency in the window layers with nano-sized silicon crystals has been observed to facilitate the significant improvement of perpendicular dark conductivity and transport behavior at p/ITO interfaces. The dark current-voltage characteristics indicated intrinsic a-Si/p-type microcrystalline silicon heterojunction transitions possessed much higher recombination rate and decreased value of built-in potential in the intrinsic layer. By optimizing the process parameters, high open circuit voltage (0.96 V) and fill factor (0.73) were achieved for n-i-p type a-Si single junction solar cell with p-type amorphous silicon carbide/nanocrystalline silicon hybrid window layer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Semiconducteur type p</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>p type semiconductor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Semiconductor tipo p</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Matériau amorphe</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Amorphous material</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Material amorfo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire silicium</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Silicon solar cells</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Addition bore</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Boron addition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Adición boro</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Radiofréquence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Radiofrequency</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Radiofrecuencia</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Méthode PECVD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>PECVD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Chemical vapor deposition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Depósito químico fase vapor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Propriété transport</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Transport properties</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Propiedad transporte</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Conductivité obscurité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Dark conductivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Barrière potentiel</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Potential barrier</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Barrera potencial</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Courant obscurité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Dark current</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Corriente obscuridad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Diode</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Diode</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Diodo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Doping</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Doping</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Haute tension</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>High voltage</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Alta tensión</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Semiconducteur type n</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>n type semiconductor</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Semiconductor tipo n</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Microcristal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Microcrystal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Microcristal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Carbure de silicium</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Silicon carbide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Silicio carburo</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Couche fenêtre</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Window layer</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Cellule solaire monojonction</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Single junction solar cell</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000014 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000014 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0027507
   |texte=   The influence of perpendicular transport behavior on the properties of n-i-p type amorphous silicon solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024